Numerical solutions of a generalized theory for macroscopic capillarity.

نویسندگان

  • F Doster
  • P A Zegeling
  • R Hilfer
چکیده

A recent macroscopic theory of biphasic flow in porous media [R. Hilfer, Phys. Rev. E 73, 016307 (2006)] has proposed to treat microscopically percolating fluid regions differently from microscopically nonpercolating regions. Even in one dimension the theory reduces to an analytically intractable set of ten coupled nonlinear partial differential equations. This paper reports numerical solutions for three different initial and boundary value problems that simulate realistic laboratory experiments. All three simulations concern a closed column containing a homogeneous porous medium filled with two immiscible fluids of different densities. In the first simulation the column is raised from a horizontal to a vertical orientation inducing a buoyancy-driven fluid flow that separates the two fluids. In the second simulation the column is first raised from a horizontal to a vertical orientation and subsequently rotated twice by 180 degrees to compare the resulting stationary saturation profiles. In the third simulation the column is first raised from horizontal to vertical orientation and then returned to its original horizontal orientation. In all three simulations imbibition and drainage processes occur simultaneously inside the column. This distinguishes the results reported here from conventional simulations based on existing theories of biphasic flows. Existing theories are unable to predict flow processes where imbibition and drainage occur simultaneously. The approximate numerical results presented here show the same process dependence and hysteresis as one would expect from an experiment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macroscopic capillarity and hysteresis for flow in porous media.

A macroscopic theory for capillarity in porous media is presented, challenging the established view that capillary pressure and relative permeability are constitutive parameter functions. The capillary pressure function in the present theory is not an input parameter but an outcome. The theoretical approach is based on introducing the residual saturations explicitly as state variables [as in Ph...

متن کامل

Fundamental Solutions of Dynamic Poroelasticity and Generalized Termoelasticity

Fundamental solutions of dynamic poroelasticity and generalized thermoelasticity are derived in the Laplace transform domain. For poroelasticity, these solutions define the solid displacement field and the fluid pressure in fluid-saturated media due to a point force in the solid and an injection of fluid in the pores. In addition, approximate fundamental solutions for short times are derived by...

متن کامل

GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE

The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generaliz...

متن کامل

Role of instabilities in determination of the shapes

The shapes of growing crystals are determined by an interplay of complex processes that include transport of energy and matter through bulk phases, capillarity-related processes that determine local equilibrium conditions at the crystal-nutrient interface, and non-equilibrium kinetic processes that take place locally to that interface. A mathematical description of crystal growth results in a f...

متن کامل

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 81 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010